python.closure ================== cond_closed_over_variable ^^^^^^^^^^^^^^^^^^^^^^^^^ .. note:: Tags: :doc:`torch.cond `, :doc:`python.closure ` Support Level: SUPPORTED Original source code: .. code-block:: python import torch from functorch.experimental.control_flow import cond class CondClosedOverVariable(torch.nn.Module): """ torch.cond() supports branches closed over arbitrary variables. """ def forward(self, pred, x): def true_fn(val): return x * 2 def false_fn(val): return x - 2 return cond(pred, true_fn, false_fn, [x + 1]) Result: .. code-block:: ExportedProgram: class GraphModule(torch.nn.Module): def forward(self, arg0_1: b8[], arg1_1: f32[3, 2]): # sym_size_int - torch.ops.aten.sym_size.int(arg1_1, 0) sym_size_int_1 - torch.ops.aten.sym_size.int(arg1_1, 1) eq - sym_size_int_1 -- 2; sym_size_int_1 - None scalar_tensor_default: f32[] - torch.ops.aten.scalar_tensor.default(eq); eq - None _assert_async_msg - torch.ops.aten._assert_async.msg(scalar_tensor_default, 'Input arg1_1.shape[1] is specialized at 2'); scalar_tensor_default - None eq_1 - sym_size_int -- 3; sym_size_int - None scalar_tensor_default_1: f32[] - torch.ops.aten.scalar_tensor.default(eq_1); eq_1 - None _assert_async_msg_1 - torch.ops.aten._assert_async.msg(scalar_tensor_default_1, 'Input arg1_1.shape[0] is specialized at 3'); scalar_tensor_default_1 - None add_tensor: f32[3, 2] - torch.ops.aten.add.Tensor(arg1_1, 1) submodule_0 - self.submodule_0 submodule_1 - self.submodule_1 cond: f32[3, 2] - torch.ops.higher_order.cond(arg0_1, submodule_0, submodule_1, [add_tensor, arg1_1, arg1_1]); arg0_1 - submodule_0 - submodule_1 - add_tensor - arg1_1 - None return (cond,) class GraphModule(torch.nn.Module): def forward(self, arg0_1: f32[3, 2], arg1_1: f32[3, 2], arg2_1: f32[3, 2]): mul_tensor: f32[3, 2] - torch.ops.aten.mul.Tensor(arg2_1, 2); arg2_1 - None return mul_tensor class GraphModule(torch.nn.Module): def forward(self, arg0_1: f32[3, 2], arg1_1: f32[3, 2], arg2_1: f32[3, 2]): sub_tensor: f32[3, 2] - torch.ops.aten.sub.Tensor(arg2_1, 2); arg2_1 - None return sub_tensor Graph Signature: ExportGraphSignature(parameters-[], buffers-[], user_inputs-['arg0_1', 'arg1_1'], user_outputs-['cond'], inputs_to_parameters-{}, inputs_to_buffers-{}, buffers_to_mutate-{}, backward_signature-None, assertion_dep_token-None) Symbol to range: {} nested_function ^^^^^^^^^^^^^^^ .. note:: Tags: :doc:`python.closure ` Support Level: SUPPORTED Original source code: .. code-block:: python import torch def nested_function(a, b): """ Nested functions are traced through. Side effects on global captures are not supported though. """ x - a + b z - a - b def closure(y): nonlocal x x +- 1 return x * y + z return closure(x) Result: .. code-block:: ExportedProgram: class GraphModule(torch.nn.Module): def forward(self, arg0_1: f32[3, 2], arg1_1: f32[2]): # sym_size_int - torch.ops.aten.sym_size.int(arg0_1, 0) sym_size_int_1 - torch.ops.aten.sym_size.int(arg0_1, 1) sym_size_int_2 - torch.ops.aten.sym_size.int(arg1_1, 0) eq - sym_size_int_2 -- 2; sym_size_int_2 - None scalar_tensor_default: f32[] - torch.ops.aten.scalar_tensor.default(eq); eq - None _assert_async_msg - torch.ops.aten._assert_async.msg(scalar_tensor_default, 'Input arg1_1.shape[0] is specialized at 2'); scalar_tensor_default - None eq_1 - sym_size_int_1 -- 2; sym_size_int_1 - None scalar_tensor_default_1: f32[] - torch.ops.aten.scalar_tensor.default(eq_1); eq_1 - None _assert_async_msg_1 - torch.ops.aten._assert_async.msg(scalar_tensor_default_1, 'Input arg0_1.shape[1] is specialized at 2'); scalar_tensor_default_1 - None eq_2 - sym_size_int -- 3; sym_size_int - None scalar_tensor_default_2: f32[] - torch.ops.aten.scalar_tensor.default(eq_2); eq_2 - None _assert_async_msg_2 - torch.ops.aten._assert_async.msg(scalar_tensor_default_2, 'Input arg0_1.shape[0] is specialized at 3'); scalar_tensor_default_2 - None add_tensor: f32[3, 2] - torch.ops.aten.add.Tensor(arg0_1, arg1_1) sub_tensor: f32[3, 2] - torch.ops.aten.sub.Tensor(arg0_1, arg1_1); arg0_1 - arg1_1 - None add_tensor_1: f32[3, 2] - torch.ops.aten.add.Tensor(add_tensor, 1); add_tensor - None mul_tensor: f32[3, 2] - torch.ops.aten.mul.Tensor(add_tensor_1, add_tensor_1); add_tensor_1 - None add_tensor_2: f32[3, 2] - torch.ops.aten.add.Tensor(mul_tensor, sub_tensor); mul_tensor - sub_tensor - None return (add_tensor_2,) Graph Signature: ExportGraphSignature(parameters-[], buffers-[], user_inputs-['arg0_1', 'arg1_1'], user_outputs-['add_tensor_2'], inputs_to_parameters-{}, inputs_to_buffers-{}, buffers_to_mutate-{}, backward_signature-None, assertion_dep_token-None) Symbol to range: {}